This project provides 8 fully protected and isolated high-side power switches that are able to handle current up to 625 mA. An 8-bit parallel microcontroller compatible interface allows connecting the inputs directly to a microcontroller or standalone circuit system. The input interface also supports direct control mode and is designed to operate with 3.3/5V CMOS compatible levels. The signal transfer from input to output side is realized by the integrated Coreless Transformer Technology. The board is designed for industrial applications such as process control and PLC to drive inductive, resistive, and capacitive loads like Relay, solenoid, lamps, heaters, piezo.

The input can be driven by applying 3.3V/5V CMOS compatible signals to connector CN1. It can operate in microcontroller Mode by using Chip Select and Write Signals or in Direct Control Mode by closing the Jumper J1 and J2 and setting the Data Input from D0 to D7. The Output consists of 8 Channel High Side Switches with 0.6A Current rating. The Output is protected with a channel selected over-temperature switch (to off). The 8 high-side power switches are controlled by means of the integrated parallel interface. The interface is 8-bit μC compatible. Furthermore, a direct control mode can be selected that allows the direct control of the outputs OP0…OP7 by means of the inputs D0…D7 without any additional logic signal. The μC compatible interface allows a direct connection to the ports of a microcontroller without the need for other components. Each of the 8 high-side power switches is protected against short to +DC (VBB), overload, over-temperature, and against over-voltage by an active Zener clamp.


  • +DC(VBB) Load Power Supply 11V to 45V (CN2)
  • Logic Supply input Side 3.3V to 5V (CN1)
  • LED D1 Power LED Logic Supply (Input Side)
  • LED D2 LED On When (overtemperature or Vbb (+DC) below ON-Limit is detected)
  • Load CN3 to CN7
  • Interface 3.3/5V CMOS operation compatible
  • Parallel interface
  • Direct control mode
  • High common-mode transient immunity
  • Short circuit protection
  • Maximum current internally limited
  • Overload protection
  • Overvoltage protection (including load dump)
  • Undervoltage shutdown with auto-restart and hysteresis
  • Switching inductive loads
  • Common output disable pin
  • Thermal shutdown with restart
  • Thermal independence of separate channels
  • Common diagnostic output
  • ESD protection
  • Loss of -GNDBB (GNDbb) and loss of +DC(Vbb) protection
  • Reverse Output Voltage protection
  • Isolated return path for DIAG signal
  • +DC (Vbb) monitoring
  • PCB dimensions: 87.49 x 62.07 mm


About The Author

Muhammad Bilal

I am a highly skilled and motivated individual with a Master's degree in Computer Science. I have extensive experience in technical writing and a deep understanding of SEO practices.

Leave a Comment

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.