PORTLAND, Ore.βPurdue University researchers have demonstrated a CMOS-compatible all-optical transistor capable of 4THz speeds, potentially over a 1000 times faster than silicon transistors.
Nano-photonic transistors processed at low-temperatures can be fabricated atop complementary metal oxide semiconductors (CMOS) to boost switching time by ~5,000-times less than 300 femtoseconds (fs) or almost 4 terahertz (THz), according to researchers at Purdue University. The aluminum-doped zinc oxide (AZO) material from which these optical transistors are fabricated has a tunable dielectric permittivity compatible with all telecommunications infrared (IR) standards.
βThe limiting time is ~300fs for a speed of ~4THz although it could be faster if you sacrifice some of the performance,β doctoral candidate Nathaniel Kinsey told EE Times. Kinsey is working with Purdue University (West Lafayette, Indiana) professors Alexandra Boltasseva, a EE, and Vladimir Shalaev, the scientific director of nano-photonics at Purdueβs Birck Nanotechnology Center.
βWhat is important,β Kinsey continued, βis that electrical transistors are limited by the RC delay time while the limiting mechanism for our βall optical transistorβ is recombination time. These are entirely different mechanisms and the latter could enable much more freedom in engineering performance and responses to reach faster switching speeds than the electrical counterpart.β
The transparent conducting oxides making up these photonic transistors are CMOS-compatible materials with low optical loss that can be processed at temperatures low enough for back-end-of-line (BEOL) fabrication. Their metal-like, versatile and tunable behavior makes them ideal for fabricating optical transistors atop CMOS chips, however in the past their slow electron-hole recombination time for emitting photons exceeded 100
For more detail: