Β The lasing structure was formed in indium arsenide/gallium arsenide layers grown directly on a silicon substrate; the research group notes that previous work has involved wafer bonding techniques to merge electrical and optical (lasing) structures. The group built CW lasers β electrically pumped InAs/GaAs quantum dot lasers β emitting at around 1300 nm (infra-red), with wavelength being somewhat temperature-dependent. Room-temperature output power exceeding 105β mW and operation up to 120β Β°C, sustained for over 3000 hours of operation, yielded data that predicted a lifetime (using conventional extrapolations) over 100,000 hours. Their results, say the group, are, βa major advance towards reliable and cost-effective silicon-based photonicβelectronic integration.β
Β Professor Peter Smowton, from the School of Physics and Astronomy at Cardiff, said: βRealising electrically-pumped lasers based on Si substrates is a fundamental step towards silicon photonicsβ¦.
βOur breakthrough is perfectly timed as it forms the basis of one of the major strands of activity in Cardiff Universityβs Institute for Compound Semiconductors and the Universityβs joint venture with compound semiconductor specialists IQE.β
Β Professor Alwyn Seeds, Head of the Photonics Group at University College London, said: βThe techniques that we have developed permit us to realise the Holy Grail of silicon photonics β an efficient and reliable electrically driven semiconductor laser directly integrated on a silicon substrate. Our future work will be aimed at integrating these lasers with waveguides and drive electronics leading to a comprehensive technology for the integration of photonics with silicon electronicsβ
For more detail:Β Lasers built on silicon are a step towards fully integrated photonics