I was contacted by somebody who suggested I should enter our senior design project here. Seeing as how we found and used the AX-12s from Trossen Robotics, I figured this would be a great place to post.
This project was our senior design, a semester long course that requires a team of electrical and computer engineering undergraduates to design, order parts for, build, and program a piece of their choosing. We figured that, since we knew weβd be locked up in the senior design lab anyway, we should at least do something at least mildly entertaining. We were given about a $500 budget from the school.
The ball and all opponent players are tracked visually with a webcam hooked up to the computer. Both are unique colors, so tracking becomes a trivial task. In order to increase the processing speed, trajectory prediction is used. This allows the ball to be localized to a βmost likelyβ position, around which, individual pixels may be searched. The advantage to using a visual system is that itβs more true to the way humans play. We wanted to create a robot that played the game as much like humans do as possible. An alternative method would be to either implant a locator in the ball or furnish the table with an array of sensors. One additional advantage is that webcams are CHEAP compared to any other system. Finally, by using a visual system, we can track any number of objects, none of which need to be βspecially outfitted.β We can track each trajectory and there is little to no ambiguity of what those objects are. In a time-crunch situation, itβs also nice to know that itβs very easy to interface a webcam to a PC (simple USB connection). The software on the PC was all written in Java, utilizing the Java Media Framework (JMF). Contrary to popular opinion, the lag from the webcam and the processing time on the PC are so minimal they can easily be adjusted for in software.
Since this is a robotics website, I will get down to the guts and glory of what most of you are probably intested in: the servo motors. We used 2 different types of servos for this project, though in retrospect, I would probably go about the project quite differently in some aspects (Iβll revel in that a little later in this post). As I already mentoned, we did use th AX-12s for 4 of the 8 motrs (1 for each row). These provided the lateral motion. The beauty behind them is how eeeaaasssyyyyy they are to program! They provide great torque, are individually addressable on a single serial link, have tons of built-in features (torque overload detection, heat overloads, etc), and theyβre relatively inexpensive. By using a larger external gear, we were able to convert that high torque into a higher lateral speed.
I am an experienced technical writer holding a Master's degree in computer science from BZU Multan, Pakistan University. With a background spanning various industries, particularly in home automation and engineering, I have honed my skills in crafting clear and concise content. Proficient in leveraging infographics and diagrams, I strive to simplify complex concepts for readers. My strength lies in thorough research and presenting information in a structured and logical format.
This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. ACCEPTCheck Privacy Policy
Manage consent
Privacy Overview
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.