Interfacing PIC16F877A with DHT11 (RHT01) sensor Proteus simulation




PIC16F877A + DHT11 (RHT01) Proteus simulation
This topic shows how to interface DHT11 (RHT01) digital relative humidity and temperature sensor with PIC16F877A microcontroller, and how to simulate this interfacing using Proteus.
Note that for the simulation Proteus version should be 8.1 or higher. With these versions there is no need to install Proteus DHT11 library, it is included with the software, so don’t waste your time searching for dht11 Proteus library or dhtxx.mdf or dht11 module for Proteus, just use Proteus version 8.1 or higher.
About DHT11 (RHT01) relative humidity and temperature sensor:
The DHT11 sensor comes in a single row 4-pin package and operates from 3.3 to 5.5V power supply. It can measure temperature from 0-50 °C with an accuracy of ±2°C and relative humidity ranging from 20-90% with an accuracy of  ±5%. The sensor provides fully calibrated digital outputs for the two measurements. It has got its own proprietary 1-wire protocol, and therefore, the communication between the sensor and a microcontroller is not possible through a direct interface with any of its peripherals. The protocol must be implemented in the firmware of the MCU with precise timing required by the sensor.Interfacing PIC16F877A with DHT11 (RHT01) sensor Proteus simulation
The following timing diagrams describe the data transfer protocol between a MCU and the DHT11 sensor. The MCU initiates data transmission by issuing a “Start” signal. The MCU pin must be configured as output for this purpose. The MCU first pulls the data line low for at least 18 ms and then pulls it high for next 20-40 us before it releases it. Next, the sensor responds to the MCU “Start“  signal by pulling the line low for 80 us followed by a logic high signal that also lasts for 80 us. Remember that the MCU pin must be configured to input after finishing the “Start“ signal. Once detecting the response signal from the sensor, the MCU should be ready to receive data from the sensor. The sensor then sends 40 bits (5 bytes) of data continuously in the data line. Note that while transmitting bytes, the sensor sends the most significant bit first.Curcuit Interfacing PIC16F877A with DHT11 (RHT01) sensor Proteus simulation
Data format: 8bit integral RH data + 8bit decimal RH data + 8bit integral T data + 8bit decimal T data + 8bit check sum. If the data transmission is right, the check-sum should be the last 8bit of “8bit integral RH data + 8bit decimal RH data + 8bit integral T data + 8bit decimal T data”.

READ  Single-Axis PIC Controlled Solar Tracker DIY Kit

JLCPCB – Prototype 10 PCBs for $2 + 2 days Lead Time
China’s Largest PCB Prototype Enterprise, 300,000+ Customers & 10,000+ Online Orders Per Day
Inside a huge PCB factory: https://www.youtube.com/watch?v=_XCznQFV-Mw




Current Project / Post can also be found using:

  • simple transducer project

Leave a Comment

*
= 4 + 2

Read previous post:
AFFORDABLE DNA DETECTION USING A SMARTPHONE

Researchers at UCLA have developed an improved method to detect the presence of DNA biomarkers of disease that is compatible with use...

Close
Scroll to top